Market Power Rents and Climate Change Mitigation

A Rationale for Export Taxes on Coal?

Philipp M. Richter, Roman Mendelevitch, Frank Jotzo
Export Taxes as a Tool of Climate Change Mitigation

Problem:

- High and increasing global demand for coal → high CO\(_2\) emissions
- No global climate regime that would impose a cap on CO\(_2\) emissions

Question: how to reduce CO\(_2\) from coal demand?

- Unilateral climate policy (e.g. EU-ETS) may lead to carbon leakage
 (↓ demand → ↓ world price → ↑ consumption in other regions)
- Supply side policies to tackle the source (Sinn 2008, Haftendorn 2012, Harstad 2012)

Here: Analysis of supply restrictions of coal (e.g., via an export tax)

- Generation of tax revenues, improvement of the terms-of-trade, and reduction of worldwide CO\(_2\) emissions

Short-term and long-term reactions of interest !!!
World steam coal seaborne trade in 2012: 967 Mt → Australia 16.5% of exports

Australia: Major exporter with impact on world price + climate change awareness (?!)

Source: own illustration based on IEA, 2013. Coal Information
Agenda

1. Motivation
2. A Two-Level Game: Methodology and the Model
3. Results – Australian Export Tax vs. Coalition
4. Discussion of Limitations
5. Conclusions & Next Steps
Setting-Up a Two-Level Game as an Mathematical Program with Equilibrium Constraints (MPEC)

The Upper Level

- country g that takes the market reaction into account (lower level)
- Decision variable: (starting value) of an (energy based) export tax
- Maximization of the NPV of tax revenues
Market Power Rents and Climate Change Mitigation
Roman Mendelevitch, Jahrestagung des Vereins für Socialpolitik 2015, Münster, 07. Sept. 2015

P: Producers
E: Exporters
C: Consumption
{): Capacity restriction

Source: Haftendorn et al. 2012
Setting-Up a Two-Level Game as an Mathematical Program with Equilibrium Constraints (MPEC)

The Upper Level
- country g that takes the market reaction into account (lower level)
- Decision variable: (starting value) of an (energy based) export tax
- Maximization of the NPV of tax revenues

The Lower Level – Equilibrium in...
- Large-scale multi-period model of (competitive) steam coal market
 - CoalMod-World (Haftendorn et al. 2012 and Holz et al. 2015)
- Profit-maximizing players with specific constraints
 - Producers and Exporters
- Market clearing via inverse demand functions
- Model features:
 - Mine mortality effects on costs and production capacities
 - Endogenous investment in production and export capacities
 - Substitution between importing and domestic production
Represented countries by type:

- 40 consumption nodes (C), 25 producers (P), and 14 exporters (E)
- Multi-period model with yearly equilibria in 5-years-steps from 2010 to 2035

Base Case: New Policies Scenario of World Energy Outlook 2012 (IEA, 2012)
- Increasing coal consumption over time (20% until 2035);
- Dominant consumers: China and India; increasing exports of the USA
Agenda

1. Motivation
2. A Two-Level Game: Methodology and the Model
3. Results – Australian Export Tax vs. Coalition
4. Discussion of Limitations
5. Conclusions & Next Steps
Case – Australian Export Tax

Four partial effects on the mass balances relative to the *Base Case*:

1. Australian exports are reduced

2. Australian domestic consumption is increased

3. RoW production is increased
 - Exporting competitors increase their supply
 - Importing countries increase domestic production

4. RoW consumption is reduced
Market Power Rents and Climate Change Mitigation
Roman Mendelevitch, Jahrestagung des Vereins für Socialpolitik 2015, Münster, 07. Sept. 2015

Case – Australian Export Tax

Tax Setter: Australia

Tax Type: Export Tax

- **Discount Rate:** 5%
- **Annual growth rate of tax:** 2.5%

Initial Tax Rate:
0.66 USD/GJ
(18 USD/ton of Australian coal, 6.7 USD/tCO₂)

NPV Tax Revenues:
16 bn. USD

![Figure 2: Time paths of the export tax rate and resulting tax revenues](image-url)
Unilaterally reduced Australian production is largely compensated for (leakage of 70%). USA, Russia and Indonesia substitute Australian exports. Domestic production increases esp. in China and India. Volumes of seaborne trade are reduced by 40-50 Mt per year. Price effect only in 2015.
Case – Export Tax Coalition

Tax Setter: Australia, Colombia, Indonesia and South Africa

Discount Rate: 5%

Annual growth rate of tax: 2.5%

Tax Type: Export Tax

Initial Tax Rate:

0.99 USD/GJ

(10.1 USD/tCO\(_2\))

NPV Tax Revenues:

125 bn. USD

AUS

NPV Tax Revenues:

16 bn. USD

Optimal tax level

Figure 2: Time paths of the export tax rate and resulting tax revenues

Figure 2: Time paths of the export tax rate and resulting tax revenues.
Case – Export Tax Set by Coalition Global Impact

- Smaller leakage effect, larger reduction in global consumption
- Emissions reduced by on average 200 Mt CO₂ per year
- Significant price increase due to export tax

Figure: Change in exports, production for domestic consumption and weighted consumer price, relative to the base case, in Mt.
Some Considerations on Sensitivity

Export tax vs. Production tax

- Production tax consistently yields higher optimal tax rates and higher tax revenue, but ...
- exploits domestic consumers 100% dependent on domestic production

Include additional coalition member: USA

- Optimal tax rate increases by 20%, but ...
- US share of coalition tax revenue is very small compared to others
- → collusion incentives and stability of coalition needs to be further examined

Optimal tax rate is robust to different levels of the discount rate

Optimal tax rate and NPV is sensitive to annual growth rate of tax

- Highest NPV is achieved with growth rates between 0 and 2.5% per year
Short Discussion of Approach

What we do take into account:

• Production increases of exporting competitors
• Substitution between domestic production and imports
• Endogenous capacity expansions

What we do not / cannot take into account:

• Fuel substitution in partial coal model
 • Only indirectly in demand function
 • Hence, upper level of emissions reductions
• Retaliation of other exporters or importers
• Endogenous paths of tax rate
• Stability of coalition or distribution mechanism
Conclusions

Two motives which might justify an export tax on coal
• Rent extraction (and terms-of-trade improvement)
• Climate change mitigation

Non-negligible Australian export tax based on tax revenue maximization
• Large leakage effects, small climate effect
• Short-term and long-term reactions via investments
• Coalition policy may lead to welfare increases for exporters
• Production tax consistently show higher tax level and high NPV, but...

Outlook & next steps
• Focus on rent distribution
• More elaborate upper level at the costs of solution techniques?
Thank you for your attention.